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i. The mathematical formulation of the problem of the motion of a drop of viscous liquid 
under the action of thermocapillary forces consists of the following [i]. It is necessary 
to find a surface rt, separating the space R 3 into abounded singly connected region ~+t and 
its complement Q~ = Rs\~, and the velocity field v, the pressure field p, and the tempera- 
ture field T, which depend on the time t and the spatial coordinates x = (x I, x2, x 3) and 
satisfy the differential equations 

O v / a t . - f - v . v v  = - - p - l v p  + vV2V + g, V . V  = O, 
( i . i )  

aT~at + v.vT = %v2T in R 3 \ F t ~  

and the jo in ing  condi t ions  

the conditions on infinity 

[ P . n ]  + = crKn + Vr~ ,  V~ = v . n ,  [v] + = O, 

[• + = O, IT] + _ = 0 on r t ,  

(1.2)  

and the initial conditions 

v ~ 0  as I x l ~ o o  ( 1 . 3 )  

v = V o ,  T = To, Ft  = Po at t = O. ( 1 . 4 )  

Here the density p, the kinematic coefficient of viscosity v, the coefficient of thermal dif- 
fusivity X, and the coefficient of thermal conductivity x are piecewise-constant with a sur- 
face of discontinuity Ft; the coefficient of surface tension o is a known function of the tem- 
perature; P = -pI + 2DD(v), stress tensor; ~ = pv, dynamic coefficient of viscosity; I, unit 
tensor; D(v), tensor of the deformation velocities, equal to the symmetric part of the tensor 
7v; Vn, velocity of Ft along the outer normal n, to ~+t; K, sum of the principal curvatures 
rt (the trace of the curvature tensor); V and 7F, gradient operator in R 3 and gradient opera- 
tor on Ft, respectively. The symbol [']~ denotes a jump, i.e., [f]~ = f+ - f-, where f• are 
the limiting values of the function f(x, t) as x approaches a point on the surface Ft from 
~• The mass-force density g(x, t), the functions vQ(x), T0(x), and the surface F 0 are given. 

It is evident from the boundary conditions (1.2) that the velocity and temperature fields 
are continuous across Ft, while the pressure field and tangential stresses undergo a jump. As 
a result, in the presence of a temperature gradient there arise thermocapillary forces which, 
together with the bouyancy forces, cause the drop to drift. For simplicity, here we study 
the particular variant of the initial conditions v 0 = 0, T o = A.x, F 0 = {Ixl = a}. In addi- 
tion, it is assumed that A = (0, 0, A) and g = (0, 0, g(t)). This problem describes the ac- 
celeration of a drop by thermocapillary and buoyancy forces. The case of constant o and g 
is studied in [2, 3]. 

2. We transform now to a noninertial coordinate system, fixed to the center of mass 
of the drop, moving in the starting system with the velocity u(t) = (0, 0, u(t)), i.e., 

i 

S x ' = x - -  u( t )  dt, t ' = t .  
0 

We introduce the new functions sought: 

v '  = v - - u ,  p '  = p + p x [ g - - d u / d t ] ,  T '  = T, 
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in the primed variables the system of equations (i.i) and (1.2) then transforms into a sys- 
tem of the same form with g' = 0, V'n = Vn - u.n, P' = -[p' + ~x'(du/dt - g)]I * 2DD(v'). 

Suppose that o(T) = o 0 - oiT, where o 0 and o I are positive numbers. We select as the 
length, time:, velocity, pressure, and temperature scales the quantities a, a2/v -, oaAa/~-, 
o~A, and Aa. Then the equations of motion after dropping the primes assume the form 

Ov/Ot -6 ~ I a v . v v  = - -VP /9  ~ + v~ V-V : 0, ( 2 . 1 )  

Pr[OT/Ot + M a v . v T ]  = Z~ f2 +,  

Ov/Ot + M a v . v v  = " V P  + V ~v, V "v = 0 ,  

P r  [OT/Ot + Ma v . V T ]  = V2T in f~t;  

{ = p +  + p-  -6 (9 ~ - -  t ) (du/dt  - -  ~])xa}n -6 2 ~ ~  - - 2 D ( v - ) - n  = (We -~ - -  T ) K n  - -  Vr  T,  

Vn = v + .n ,  V,~ = v - - n ,  v + .~ = v - . r ,  

x~ = OT-/On, T + = T-  on Pt;  

v + u - + O  as l x l - + o o ;  

v = O ,  u = O ,  Z = x a ,  r t =  { I x l ~ t }  at t : O .  

Here T is the vector tangent to rt; o ~ = p+/p-; v ~ = v+/v-; ~0 = ~0v0; 

( 2 . 2 )  

(2.3) 

(2.4) 

X o = X+/X-; zo : • 2 1 5  
Ma = (Z-~-)-lozAa2, Marangoni number; We = ozAa/o0, modified Weber number; Pr = v-/X-, Prandtl 

I ) = - - t  , d i m e n s i o n l e s s  m a s s - f o r c e  d e n s i t y ;  n u m b e r ;  a n d  q(t)  ( chA) - lp -ag  ~-  

3.  L e t  u s  a s s u m e d  t h a t  bla a n d  Bo = s u p  I (p  ~ - 1 ) ~ ( t )  I ( a n a l o g  o f  B o n d ' s  n u m b e r )  a r e  
much less than i. For fixed physical parameters of liquids these conditions are realized 
if the quantities a~2A and A -~ sup I g(t)l are sufficiently small.* Expanding formally the 
functions v, p, T in a series in Ma, we obtain for the first approximation the problem (2.1)- 
(2.4) with Ma = 0, which has an exact solution with a spherical interface Ft - {Ixl = i}. In 
this case, Vn = 0 and K = -2. 

Let (r, ~ , 0) be spherical coordinates, i.e., 

x~ = r cos q~ s in  O, x,  : r s i n r p s i n O ,  x a =  r c o s O .  

We shall seek a solution under the assumption of axial symmetry. We introduce the stream 
:[unction 9(r, 8, t) by the equations 

Stokes' system 

l o~ 1 o~ 
Vr r e sinO 00~ vO rs inO Or ' 

then assumes the form 

Ov/Ot : " 9 - 1 V p  -6 vV~V 

i Op t o (  2 o~] 
p Or r ~  v E ~ - - 7 7 -  ' 

o,} ~- Op t__ 2 O v E ~___$_i_ , 
p o~ t -  Or 

w h e r e  E 2 =  ~ + t - - g 2  o 2 0~ r r~ O~; ~ = cos O. Correspondingly, the components of the stress tensor 

have the following form in terms of ~: 

PrO ~ (1--~)112 < r Or ]~' 

*For example, for an air bubble in silicone oil at 1410~ and in pure water at 15~ Ma and 
Bo are less than i, if a2A does not exceed 7.2.10 -6 and 8.7.10 -4 deg.cm, respectively, while 
~A -Isup Ig(t)l does not exceed 0.17 and 0.15 cm3.sec-2.deg -l. 
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0 0 t I a ,  ] 2 0~* ] 
Ot + r - r  O~t"  

As a result there arises the problem for the functions ~, T, and u: 

E2[v~ - -  al~t] = O, PrT t  = %OAT for r < 1,, 

E~[E2r - -  apt] =0,~ P r T t =  AT for r 2 > t ;  

~+ = o, ~ -  = o, ,~+ = r  

• 1 7 6  = T~-,  T + = T -  at r = 1; 

, / r - +  u(l  -- ~ ) ,  *~/r ~-+ --u~ as r -+ oo; 

, = 0 ,  T - = r ~ ,  u = O  at t - - O ;  

(3.1) 

(3.2) 

(3.3) 

(3.4) 

I ( / 0 \ 0  o r  o 1 ~  
Here A=-~i-~-r Ir~-~-r)- _ - +-g~[(l--~2)~]~; the subscripts r, ~, t denote partial derivatives with 

respect to the corresponding variables. Equation (3.5) arose after differentiation of the 
normal component of the dynamic condition with respect to $. 

4. The solution of the problem (3.1)-(3.5) is given by 

~(r, ~, t) = rf(r, t)(t -- ~2), T(r, ~, t) = @(r, t)~. 

Let u*(s), f*(r, s), O*(r, s) be the Laplace transforms of the functions u(t), f(r, t), 
0(r, t). Then, taking into account the initial conditions (3.4), we obtained a problem for 
u*, f*, @*: 

L~[v~ * - -  s]*] = O, %~ = Pr[s@* - -  r] for r < t ,  
(4.1) 

L~[L2] * - s [ * ]  = O, L20 * = P r [ s O * - - r ]  for r > t ;  

f*+ O, !* -  = O, ]~*§ *-  *-  = O* = = b , ~ o / * ~  _ b ~  , 

• *- O*- (4.2) =@~ , O  * + =  at r = l ;  

]~-+u*/2,  J* / r -+u*/2  at r - -+oo;"  (4.3) 

( i  - -  po) ( s u *  - -  ,]*) + {fret  + It* - -  (s + 6) /r*} -  ( 4 . 4 )  

= ~o [ b %  + f 5  _ (~/,~o + 6) i~*} + ~ r = 1,  

w h e r e  L~ = J ~ - ~  r ~ O ) r ~  Or r ~'2 From t h e  i n t e g r a l  i d e n t i t y  
I 

(L%)) r3dr = r 2 (rm r : -  m)~ 
0 

with the function m = L2f * - (s/~~ * it is easily established that the right side of Eq. 
(4.4) is equal to zero. Thus the condition (4.4)simplifies to the following: 

( l - - p O ) ( S U * - - ~ l * ) + ( / r * r + / * r - - ( S + 6 ) / * } - - = O  at r = l .  ( 4 . 5 )  

5. Equations (4. i), taking into account the conditions that the velocity and temperature 
fields are bounded at r = 0 and the conditions (4.3), assume the following solution: 

]*(r, s) = C1F(]//-s-[ -~~ + C.,r, 

O*(r, s) = r/s + C3F(]/ 's~r/% ~r) for r < 1,: 

]*(r, s) = u*(s)r/2 § C~6(l /Tr)  + CJr?, 

O*(r ,s )  = r/s + c o a ( l / s ~ r )  for r > t , .  
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where F(z) = (shz/z)'; G(z) = (e-Z/z)'; (')' = d/dz. The functions Cl(s) ..... C6(s) are 
determined from the six equations (4.2), while u*(s) is determined from Eq. (4.5). As a re- 
sult we obtain 

1" (r, s) = O* (l, s) + 3 (t + I / s )  u* (s)/2 F (at) -- F (~) r r < 1, 
3 + 3 / ~ +  ~~ (~) ~Z, ~' (~) - -  F (~)' 

O* (1, s) - -  3 [2 + ~~ (a)] u* (s)/2 e ~ X 
1" (r, s) = " 3 -[- ] / s  -}- ix~ (9.) 

•  G(~-s) ] + ~ u * ( s ) ( r - - ~ ) ,  r > l ,  

O* (1 ,  s) = - 7  F (1~) c (,:) ; 

c* (.9 o* tl, s) + (po _ t) ~1" (s) 
u* (s) = 0/2 + po) s + B* (s) (5.1) 

Here 

z2F € z(z ~ ~ 6 ) - - 3 ( z 2 + 2 ) t h z  . 
H ( z ) - -  zF ' (z) - -F(z)  ( z 2 + 3 ) t h z - - 3 z  ' 

.3 C* 3 (~ + V ~  
B*(s)  = - ~ [ 2 +  ~ ~  (s); C*(s) = 3 _ . V s +  ~tOH(ct), 

The following 

From the asymptotic forms of B*(s), C*(s) in the limit s + +~ it 
functions B(t) and C(t) are generalized functions at t = 0. The 
naturally represented as 

B*(s) = B*(0)  -t- sbg(s), C*(s) = C*(co) + c * ( ~  

w h e r e  B * ( 0 )  = 3 ( 2  + 3 ~ ~  + ~ o ) ] ;  C * ( ~ )  = 3 / ( 1  + p o f ~ - r } ,  a n d  
a n d  

asymptotic formulas hold: 

H(z) 3 + OizZ), z - ~  0; H(z) = z + O(Uz), z -+ + co. 

follows that the original 
transforms are therefore 

the original functions b(t) 
c(t) are ordinary functions with the following asymptotic forms in the limit t + 0 

while in the. limit t § 

u(t) 
As a result, the 

9p ~ ~ 7  t - -  + o 0 ) ,  
b it) = z (t + po ( 7 )  V ~  

" 3 ( 2 - - p  ~ ] / - 7 )  1 

formula 

b it) = y ~ ~-7-j-Y) F ~  + o (t-~/~), 

2 + 3~ ~ 1 
(t) = - -  6( i+~~ V ~  + O ( t - ~ / 9 .  

(5.1) leads to the following integrodifferential equation for 

t 

0 / 2  + ~)  u' i t) + ,f b (t - -  tl) u' (tl) dt i -4- 
0 .  

-4- 3 (2 -i- 3~ ~ 2 ( i + ~ ~  u i  t ) = Z ( t ) - 4 -  ( p o _ _ t )  q i t ) ,  

(5.2) 
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where 

Z(t) = 
t 

30 (~, t) 
l + p ~  V ' ~  + c ( t - - t ~ ) O ( l , t ~ ) d t ~ .  

0 

6. Suppose that the function ~(t) has a limit as t + ~. Then, because of the equali- 
ties 

lira 0 ( t ,  t) =-- l im sO* (i ,  s) ' 3 
t ~  s~0 2 q- • 

f r o m  ( 5 . 1 )  o r  ( 5 . 2 )  we f i n d  a f o r m u l a  f o r  t h e  l i m i t i n g  v e l o c i t y  

lira u (t) = 2 2 (t + ~o) 
t ~  (2 + n ~ (2 + 3~ ~ + 3 (2 + 3~~ - (pO _ 1) lira ~ (t). 

The first term coincides with the thermocapillary drift velocity of the drop in the stationary 
case, obtained in [4]; the second term coincides with the rise velocity of the drop under 
the action of buoyancy force: represented by the Hadamard-Rybchinskii formula. 

In an analogous manner we determine from (5.1) or (5.2) the initial acceleration of the 
drop: 

(1/2 + pO) u'  (0)= 3 1 + p~ VV + (p0 _ 1) ~1 (0). 

In addition, these equations enable finding the asymptotic expansion of u(t) with integer 
powers of C-tin the limits t + 0 and t + ~. 

In dimensional variables Eq. (5.2) can be put into the form of Newton's equation for 
the drop 

(4/3)aaap+u'(t) = FM + FB + Fs + Fr + FA, 

where FM is the force generated by the effect of augmented masses; FB is the analog of Bass's 
force; FS is Stokes's force; FT is the thermocapillary force; and FA is the buoyancy force: 

t 

2 4 _[ t - - t  F:a = ---~ naap-u' (t), F B = - - - f  ~a~t Jb ( ~  )u' (t~) dtp 
0 

F s = - - 2 ~ a , t C : "  u(t), Fr= --T~a--d~ Z -fi- t A, 

-} (o+ - o-)  g (t). 

If D0 + ~, then the thermocapillary force vanishes, and FB transforms into the Bass force, 
arising when a solid sphere moves in the liquid; here 

b*(s) = 9 / ( 2 ~ ,  b(t) = 9/(2 ~fa-t). 

I n  t h e  o t h e r  l i m i t i n g  c a s e  ~o = 0 ( d r i f t  o f  a ga s  b u b b l e )  

b (t) = 6e 9t erfc (3 ~ f t ) ,  
b* (s) = V ~  (3 + V~)' 

c* (s) = 3q- V s '  c(t)---  6 3e 9 ter fc(3  ~ f t )  - 1 , 

oo 

w h e r e  e r f c z =  3 - ~  j e -z~dz i s  t h e  c o m p l e m e n t a r y  p r o b a b i l i t y  i n t e g r a l .  S i n c e  t h e  derivative 

b'(t) = 3c(t) is integrable on (0, ~), after integration by parts Eq. (5.2) assumes the form 
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t t 

( t / 2  + 0 ~ u" (t) + 9u (t) + 3 ~ c (t - -  tl) u (t~) dt~ = 3 0  (1, t) + ~ c (t - -  t~) O (1, q) dtt + (0 ~ - -  1) ~ (t). 
0 0 

The last equation can be reduced to a third-order differential equation for u(t). Indeed, 
the formula (5.1) with ~0 = 0 can be written as 

[(I/2 4- 9~ + 3 ) +  9 ( ] / ' 7 +  l)]u*(s) = 3 ( ] / ' 7 +  l)O*(l, s) + (p0 _ l ) ( ] / r ~ +  3)q*(s) --~ h*(s). 

Multiplying the left and right sides of this equality by 

R*(s) = (i/2 + 0~ - 3) + 9 ( K ~ -  t) 

and i n t r o d u c i n g  a n o t a t i o n  f o r  t h e  cub i c  p o l y n o m i a l  

Q(s) = (t/2 + o~ - 9) + t 8 ( t / 2  + p~ - 3) + 81(s - 1)~ 

we obtain the differential equation 

Q(d/dt)u(t) =/ ( t ) ,  

where f(t) is a generalized function with the transform f*(s) = R*(s)h*(s). 

We can now separate the regular part in f(t) and the singular part at t = 0, which con- 
tains information on the boundary conditions for u(t). As a result, the transition from the 
generalized Cauchy problem to the classical problem is made in a standard manner. 

When ~0 = ~ the corresponding reduction proceeds to a second-order differential equation 
(see [5]). The formula (5.1) assumes the form 

[(1/2 + p~ + (9/2)(~fs + t)]u*(s) = (po(_ t)~*(s) 

and i s  r e g u l a r i z e d  by t h e  symbol 

R*(s) = (t/2 + 9~ -- (9 /2)(1/s- -  t). 

In conclusion, the authors thank V. V. Pukhnachev for formulating the problem and for 
his constant attention to this work. 
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